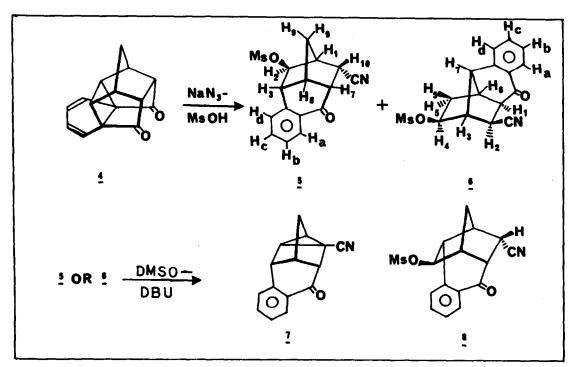
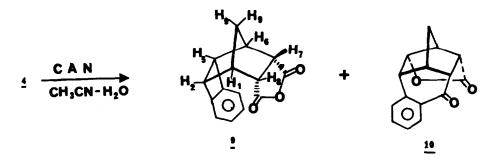
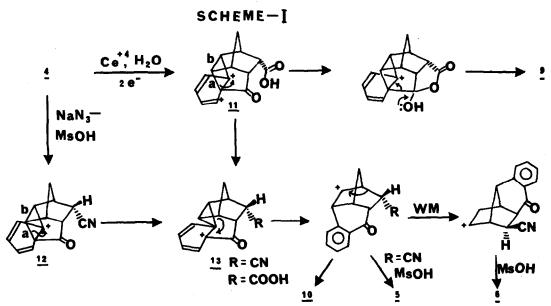

NEW REARRANGEMENTS OF CAGED SYSTEMS: INTERESTING MECHANISTIC DEVIATIONS THROUGH ANNULATION


GOVERDHAN MEHTA* and VISHWAKARMA SINGH School of Chemistry, University of Hyderabad Hyderabad - 500 001, India.

Recently, rearrangements of the caged pentacyclic dione <u>1</u> to novel carbocyclic systems <u>2</u> and <u>3 via</u> Schmidt fragmentation and ceric ion oxidation have been reported from this laboratory¹. Further interest in the chemistry of these caged systems have led us to explore the rearrangements of hexacyclo- $(7.4.2.0^{1,9}.0^{3,7}.0^{4,14}.0^{6,15})$ pentadeca-10, 12-diene-2, 8-dione² <u>4</u>, an annulated derivative of <u>1</u>, as a potential source of new and not readily accessible polycyclic systems. In this communication, we describe the deep seated rearrangement³ of the hexacyclic dione <u>4</u> to benzo-annulated tricyclo ($5.2.1.0^{3,8}$) decane, tricyclo ($4.4.0.0^{3,7}$) decane and tricyclo ($4.2.1.0^{2,5}$) nonane ring systems during Schmidt fragmentation and ceric ion oxidation.


Brief exposure of the hexacyclic dione $\underline{4}$ to sodium azide in methanesulphonic acid (99%, 0-5°, 45 min) and column chromatography (SiO₂gel) of the resultant product mixture furnished two crystalline products $\underline{5}$ and $\underline{6}$ in 15 and 20% isolated yield, respectively. The structure of $\underline{5}$, mp 211°, was indicated from its analytical and spectral data: $C_{16}H_{15}NO_4S$, $uv(MeOH): \lambda_{max}$ 256 and 208 nm; ir(KBr): 2250(cyano), 1690(carbonyl), 1180, 1360cm⁻¹(sulphonate ester) and characteristic aromatic bands; pmr(270 MHz, DMSO-d₆): δ 7.92(d, J_{ab} =8Hz, Ar-H_a), 7.68(t, J_{bc} = J_{cd} =8Hz, Ar-H_c), 7.51(d, J_{cd} =8Hz, Ar-H_d), 7.45(t, J_{ab} = J_{bc} =8Hz, Ar-Hb), 4.56(s, endo-H), 3.89(dd, $J_{1,10}$ =4.5Hz, J_{7-10} =12Hz, \underline{exo} -H₁₀), 3.38(br with st, H₃), 3.28(s, CH₃-SO₂-O), 3.18(brt, H₈), 3.13(d with st, $J_{7,10}$ =12Hz, H₇), 3.00(d, $J_{1,10}$ =4.5Hz, H₁),

4591



1.87(ABq, J_{gem} =12Hz, H_9). Similarly, <u>6</u>, mp 207^o, in conformity with its formulation, exhibited the following spectral characteristics: $C_{16}H_{15}NO_4S$, uv(MeOH): λ_{max} 250 and 210 nm; ir(KBr): 2260(cyano), 1692(carbonyl), 1180, 1365cm⁻¹(sulphonate ester) and characteristic aromatic bands; pmr(270 MHz, DMSo-d_6): δ 7.83(d, $J_{a,b}$ =8Hz, Ar-H_a), 7.66(t, J_{bc} = J_{cd} =8Hz, Ar-H_c), 7.55(d, J_{cd} =8Hz, Ar-H_d), 7.47(t, J_{ab} = J_{bc} =8Hz, Ar-H₆), 5.02(d, $J_{4,5endo}$ =6Hz, H₄), 3.47(S, H₇), 3.44(d, $J_{1,2}$ =8Hz, H₂), 3.31(s, <u>CH₃</u>-SO₂-O), 3.03(d, $J_{1,2}$ =8Hz, H₁), 2.96(S, H₃), 2.95(d, $J_{exo}5, 6^{=}$ 4.5Hz, H₆), 2.01(dd, J_{gem} =14Hz, $J_{4,5endo}$ =6Hz, <u>endo</u> H₉), 1.95(dd, J_{gem} 14Hz, $J_{exo}5, 6^{=4}$.5Hz, <u>exo</u> H₉). Several of the proton assignments for compounds <u>5</u> and <u>6</u> were deduced through appropriate spin decoupling experiments at 270 MHz. When either <u>5</u> or <u>6</u> was treated with 1,5-diazabicyclo(5.4.0) undec-5-ene(DBU) in refluxing DMSO, a single crystalline compound <u>7</u>, (mp 151^o, C₁₅H₁₁NO; uv(MeOH): No. 46

 $\lambda \max^{251}$ and 217 nm; ir(KBr): 2240(cyano), 1685cm⁻¹(carbonyl); pmr(90 MHz, CDCl₃): δ 7.2-8.3(m, 4H, Ar), 3.1(br with St, 1H), 3.05(narrow d, 1H), 2.65(br, 1H), 2.45 (s, 2H), 1.85(s, 2H); ¹³cmr(22.63 MHz, CDCl₃)⁴: δ 135.4(d), 129.2(d), 129.1(d), 128.9(d), 57.4(d), 47.8(d), 44.5(d), 36.1(t), 34.3(d), 31.4(d)) was obtained in quantitative yield. This facile base catalysed 1,3-elimination of methanesulphonic acid from 5 and 6 to form 7 reveals the mutual structural relationship between 5 and 6 and rules out alternate formulations like 8 for either of these compounds.

Reaction of 4 with ceric ammonium nitrate(CAN) in aq.CH₂CN(0⁰, 1hr) yielded a mixture of products that were readily separated by column chromatography (SiO₂gel). The fast moving product(30%), mp 194-96⁰, exhibited uv spectrum (λ_{max}^{MeOH} 273 , 267 and 263 nm diagnostic of a benzocyclobutene chromophore⁵ and is formulated as 9. The presence of the anhydride functionality and the symmetrical nature of 9 follows from its ir(KBr): 1795 and 1860cm⁻¹(anhydride); pmr $(90MHz, CDCl_{2}): 57.00-7.3(m, 4H, Ar), 3.85(m, 2H, H_{2} and H_{5}), 3.3(t, J=3Hz, H_{2} and H_{3})$ H_{g} , 3.1(m, 2H, H₁ and H_{6}), 2.06(q, J=12Hz, 2H, H₉) and ¹³cmr(22.63Hz, CDCl₃): δ 171.6(s, 2C), 145.1(s, 2C), 128.3(d, 2C), 126.8(d, 2C), 49.8(d, 2C), 49.8(t, 1C), 48.8(d, 2C), 41.9(d, 2C); spectral data. The slow moving product(40%) of CAN oxidation is assigned structure 10, mp 196⁰, on the basis of following spectral data: uv(MeOH): λ_{max}^{253} and 210 nm; ir(KBr): 1760(lactone), 1685cm⁻¹(carbonyl); $pmr(90MHz, CDCl_3): \delta 7.15-8.1(m, 4H, Ar), 4.92(q, J_1=5Hz, J_2=8.5Hz, 1H, -0-C-H),$ 3.47(m, 1H), 3-3.4(m, 4H), 1.93(q, J=10Hz, 2H); ¹³cmr(22.63 MHz, CDCl₂): δ 195.9 (s, Ar-C=0), 176.7(s, 0-C=0), 140.4(s, Ar), 134.5(d, Ar), 131.0(s, Ar), 129.2(d, Ar), 128.4(d, Ar), 127.6(d, Ar), 81.0(d, 0-<u>C</u>-H), 50.9(d), 50.6(d), 45.4(d), 44.8(d), 43.9(d), 35.7(t).

Probable mechanistic pathway for the formation of various rearrangement products is depicted in scheme I. It is interesting to note that the initially formed carbonium ion intermediates <u>11</u> and <u>12</u> rearrange to an unusual, common, α -keto-carbonium ion <u>13</u>, which is stabilised through π -delocalisation and cyclopropyl conjugation. It is perhaps this stabilisation, among other things, which directs the migration of bond 'a' in ions <u>11</u> and <u>12</u> as against the migration of bond 'b' in the earlier observed¹ rearrangements of pentacyclic dione :

Acknowledgement: We would like to express our sincere thanks to Prof.Werner Herz, Dr. H. Duddeck and Dr. B.F. Singh for their help in recording the pmr and cmr spectra.

References and Notes:

- 1(a) G. Mehta, P. Ghosh, B. Choudhury, V.K. Singh, R. Usha, K.I. Varughese and K. Venkatesan, Tetrahedron Letts., 4109 (1977); (b) G. Mehta, V.K. Singh and H. Duddeck, ibid., 1223 (1978).
- A.S. Kushner, Tetrahedron Letts, 3275 (1971); N. Fillipescu and J.M. Mente J. Chem. Soc., B, 616 (1969).
- 3. We have investigated several aspects of the chemistry of readily available 4 and these findings will be reported shortly.
- 4. Quaternary carbons were not recorded in this case.
- 5. M.P. Cava and M.J. Mitchell, J. Amer. Chem. Soc., 81, 5409 (1959); C.D. Nenitzescu, M. Avram and D. Dinu, Chem. Ber. 90, 2541 (1957) and references cited therein.

(Received in UK 13 September 1978)